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Abstract

Nowadays Machine Learning models, are able to learn from data by identifying

patterns in large datasets. Although, humans might be able to perform a same task

after just examining a few examples. This is possible thanks to the inherit humans

ability to understand causal relationships and use inductive inference in order to

assimilate new information about the world. Creating models able to demonstrate

causal reasoning would therefore open a whole new world of opportunities in Artificial

Intelligence research. Causality arises naturally in our daily life every time we ask

ourselves any type of interventional or retrospective question (eg. What if I take this

action? What if I acted differently?).

Causality has been researched and used for many years in statistics but not in great

depth in Artificial Intelligence. Identifying useful connections between these two

different ambit could therefore play a vital role in making a breakthrough towards

creating intelligent systems. Enabling Machine Learning models to be more easily

examinable to gain insights of their decision making processes could in fact facilitate

adoption of these kind of technologies in fields such as medicine, surveillance and

recruitment.
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Chapter 1

Introduction

1.1 Motivation

Thanks to recent advancements in Artificial Intelligence (AI), we are now able to

leverage Machine Learning and Deep Learning technologies in both academic and

commercial applications. Although, relying just on correlations between the different

features, can possibly lead to wrong conclusions as correlation does not necessarily

imply causation.

Three of the main limitations of Machine Learning and Deep Learning models are:

• Robustness: trained models might not be able to generalise to new data and

therefore would not be able to provide robust and reliable performances in the

real world.

• Explainability: complex Deep Learning models can be difficult to analyse in

order to clearly demonstrate their decision making process.

• Data Dependency: Deep Learning models efficiency is highly dependent on

the amount and quality of data available.

Developing models able to identify cause-effect relationships between different vari-

ables might ultimately offer a solution to solve these problems. This idea has also

been supported by researchers such as Judea Pearl and Jonas Peters, whom advo-

cated having models able to reason in uncertainties could not be enough to enable

researchers to create machines able to truly express intelligent behaviour [1].

1.2 Going Beyond Correlation

Paradoxes are a classes of phenomena which arise when, although starting from

premises known as true, we derive some sort of logically unreasonable result. One of

the most common form of paradox in Data Science is Simpson’s Paradox.

1
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As an example, let us consider a thought experiment: we carried out a research study

in order to find out if doing daily physical exercises can help or not reduce Cholesterol

levels (in mg/dL) and we are now starting to examine the obtained results. First,

we divide our population sample into two main categories based on the individuals

age (under/over 60 years old) and then we plot their cholesterol levels against the

number of hours the subjects exercised per day. By examining the results in the

first two plots of Figure 1.1, we can then infer that exercising for more hours a day

can then lead to an overall reduction in our cholesterol levels. This hypothesis can

then also be reinforced by examining the overall trend of the best fit line inferred

through Linear Regression and the quite strong negative Person Correlation scored

in both cases. At this point, reassured by our derived results, we can then try to

repeat this same analysis taking into consideration this time the whole population

sample (rightmost plot in Figure 1.1). In this case, we are faced with a completely

contradictory scenario and a positive correlation implying that more exercise can

lead to increased cholesterol levels.

Figure 1.1: Cholesterol vs Daily Hours of Exercise

This type of scenario is commonly known as Simpson’s Paradox and takes place ev-

erytime we have some form of correlation which points in a direction when considered

in a sub-group and points instead in the opposite direction if considered as part of

the whole group. In order to unveil the reasons behind this type of mechanism, we

need to try to go beyond the provided data and think about how our data was gen-

erated in the first place to cause this outcome (e.g. what unknown missing variable

might be preventing us to see the full picture?).
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In this simple scenario, our missing component could be any potentially influential

variable such as: individual’s comorbidities, diet and age. We decide then to take a

closer look on how cholesterol levels vary with greater age (Figure 1.2). Repeating

the same analysis done in Figure 1.1, we can then clearly see how cholesterol levels

are strongly positively correlated to individual’s age.

Figure 1.2: Cholesterol vs Age

From these results, we can then deduce that cholesterol levels are more likely to

increase with aging and lack of exercise (there is a cause effect relationship between

the three variables). Therefore, in order to try to quantify the benefits of exercising

in reducing cholesterol levels and overcome the Simpson Paradox, we should then

make sure to run our experiment while having a fixed value for the age of the subjects

(controlling the variable).

During the course of the last century, the Simpson Paradox occurred in many statis-

tical studies such as: UC Berkeley gender bias, Kidney stone treatment and Racial

disparity in the death penalty [2]. Other common examples of statistical/mathemat-

ical paradoxes are the Monty Hall Problem, the Berkson’s Paradox and the Accuracy

Paradox.

Additional information about technical limitations of correlation and possible alter-

native metrics which have been designed in order to overcome this type of problems

is available in Appendix B.
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1.3 Causality vs Explainability

One of the major trade-offs in modern day Machine Learning is model performance

against complexity. In fact, complex Deep Learning architectures are usually able

to perform better in a wide variety of tasks compared to traditional linear classifiers

and regression techniques. This trade-off has been analysed in-depth in the 2016

publication ”Why should I trust you?” by Ribiero et. al. [3] and led a new trend in

AI to focus on interpretability.

Complex and more accurate models are referred to as Black-boxes. These type of

models working progresses are more difficult to comprehend and they are not able

to estimate the importance of each feature and how they are related to each other.

Some examples of Black Boxes models are neural networks and ensemble models.

On the other hand, simpler and less accurate models such as decision trees and

linear regression are instead regarded as White-boxes and can be much more in-

terpretable. Two of the main measures which can be used in order to estimate the

explainability of a model are the linearity and monotonicity of a model response

function [4].

One of the key differences between Explainable AI and Causal AI is that the former

aims just to understand how a model might come to a prediction by weighting the

provided features while the latter is designed undercover the process governing the

system we are analysing to create insights. In this way, Causal AI can be used in order

to answer common retrospective and system design types of questions, providing vital

business value to organizations (e.g. EU’s General Data Protection Regulation, right

to explanation clause) [5].

1.4 Foundations of Modelling and Simulations

Modelling and Simulations is a branch of mathematics which aim to be able to im-

itate real-world processes over a period of time. In this way, artificially generated

historical data can be easily created and used in order to make inference in real-world
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applications. Simulation models are usually based on a series of simplifying assump-

tions (of the real-world environment) which can then be expressed in a mathematical

or symbolic notation [6].

There are two main types of programmable simulation models:

• Mathematical Models: make use of mathematical symbols and relationships

in order to summarise processes. Compartmental Models in Epidemiology are

a typical example of mathematical models.

• Process Models: are based on a list of steps handcrafted by the designer in

order to represent an environment (e.g. Agent Based Modelling).

Modelling and Simulations, are used in many different fields such as finance (e.g.

Monte Carlo Simulations for Portfolio Optimization), medical/military training, epi-

demiology and threat modeling [7, 8].

Some of the main uses of simulations is to verify analytical solutions, experiment

policies before creating any physical implementation and understand the connection

and relative importance of the different variables composing a system (e.g. by mod-

ifying input parameters and examining the results). As a result, these properties

makes the Modelling and Simulations paradigm a white-box approach to predict

future trends.

1.5 Objectives

As part of this research study, it will be outlined the main principles of Causal Rea-

soning, different application approaches (e.g. Bayesian Belief Networks, Time Series

Analysis) and an Epidemic Modelling case study concerning COVID-19 (Coron-

avirus).

The Novel Coronavirus, is a new type of RNA virus which is able to infect humans

potentially causing respiratory infections. The 2020 Novel Coronavirus outbreak

started in the late 2019 in Wuhan, China and, as of August 2020, it is believed the

virus is mainly able to spread by air through sneezing and coughing.
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The proposed Compartmental Models, will be based on paradigms defined in the Epi-

demiology literature [9] and the Imperial College of London COVID-19 report studies

used by the UK government in order to handle the outbreak [10]. The Agent Based

Models have instead been handcrafted in order to provide an alternative approach

to traditional mathematical model implementations including different elements of

stochasticity due to non-linear interactions at a population level.

Due to the design of the proposed models, they can potentially provide greater

help for decision makers (compared to traditional Machine Learning approaches),

if and only if, the decision makers in question have the necessary understanding of

epidemiology and its key control metrics.

Finally, these models have been exclusively designed for educational and research

purposes and are not to be applied in any other ambit (e.g. commercial, governmen-

tal).



Chapter 2

Background Theory

2.1 Concepts of Causality

Current supervised Machine Learning techniques are designed to exploit possible

relationships/correlations between features and labels in order to produce reliable

estimates. Use of this kind of technologies in sectors such as medicine, finance and

law is now raising increasing concerns due to the lack of ability in such systems to

correctly identify causal relationships and provide explanations about their decisions.

One possible solution in order to overcome these type of problems is by taking into

account causal relationships.

Causality arises naturally in our daily life every time we ask ourselves any type of

interventional or retrospective question (eg. What if I take this action? What if I

would have acted differently?).

As shown in Figure 2.1, Causal Reasoning can be divided into three different hier-

archical levels (Association, Intervention, Counterfactuals). At each level, different

types of questions can be answered and in order to answer questions at the top levels

(eg. Counterfactuals) it is necessary to have a base knowledge from the lower levels

[11]. In fact, in order to answer retrospective questions, we would expect to first be

able to respond to intervention and association type of questions.

Figure 2.1: Causality Hierarchy

7
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Currently, Machine Learning models are only able to answer the probabilistic type

of questions related to the Association level. Thanks to the rising interest in this

topic, a mathematical framework able to represent causal relationships has been

constructed (Structural Causal Models (SCM) [11]). Using this type of framework,

causal expressions can then be formulated and used in conjunction with data in order

to make predictions.

This type of framework can then be divided into two main parts: causal diagrams

and a symbolic language. The causal diagrams can be used in order to summarise

our knowledge about the topic, while the symbolic language can be used to express

what we are aiming to find out.

As an example, let us consider the diagram shown in Figure 2.2. Using this type of

representation, the arrow directions indicate how the different variables effects each

other.

In this example, a survey is carried out between individuals of age 3-20 in order

to find out if there is any correlation between height and individuals’ Intelligence

Quotient (I.Q.) Scores. Although the study might result in a positive correlation

between the two different variables, a more in depth analysis might instead show

how height does not directly cause higher I.Q. Scores but these two variables are

instead dependent on a third hidden variable (Confounder). In fact, as children

grow up, over time both their I.Q. Scores and height tends to increase due to their

improved education and greater age.

Figure 2.2: Causality Diagram

In case we want to query additional information from what we currently have avail-

able i, we can then make use of the symbolic language in order to advance questions

iSo that to move from the association to the intervention level in the causality hierarchy.
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such as: What is the probability (P) that a student will get an higher I.Q. score (S) if

he studies an additional amount of time (T)? This question could then be formulated

in a symbolic form such as P (S|do(T )) ii. When formulating these type of questions,

we are then implying that we are not anymore passively observing possible results

but instead actively intervening in order to find out about possible consequences.

This type of approach is known as an Interventional Study and is in contrast with

traditional Observational Studies.

Finally, in order to create a full Causal Inference Engine, an architecture like in Figure

2.3, might be necessary [12]. Following this type of approach, three inputs are needed

and three outputs are produced. Our three inputs are: any given assumption made

about the model (Assumptions), any questions we are trying to answer (Queries)

and any data which can be used in order to fuel our engine (Data). The model will

then output a Boolean value to show if is able or not to answer the given queries,

and if so, it would provide as second output a mathematical formula which can be

used in order to answer the queries. Finally, a numerical prediction specific to the

given input data is provided (this might contain some form of uncertainty in the

estimation given the amount of data provided and assumptions made).

Figure 2.3: Causal Inference Engine (Image reproduced from: [12])

Using this type of paradigm, can ultimately make our model much more flexible than

contemporary Deep Learning models (our model is now much less dependent on data

and more focused about intrinsic relationships and connections).

iiAlthough, Do-Calculus notation might look similar to the one of conditional probability, the
two have two different meanings.
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2.2 Linear and Non-Linear Causality

Causality is divided into two main types: linear and non-linear (Figure 2.4) [13]:

• In linear causality, connections between the variables can be in a single direction

and every effect can be originated by a limited number of causes. Causes always

linearly precede effects (time precedence).

• In non linear causality, connections between variables can be bi-directional and

effects can possibly be originated by an unlimited number of causes.

Linear causation systems are characterised by proportional relationships between

cause and effects variables (e.g. Deterministic Systems). Instead, in non-linear

causation systems, disproportionate effects can take place (e.g. Non-deterministic

Systems). For example, small changes in input conditions would then result in

different consequences (e.g. ”Butterfly Effect”).

Figure 2.4: Linear vs Non-Linear Causality

From an external point of view, each causal systems can then be characterised as

a composition of events, which might be regulated by a series of hidden trends

and rules. Being able to correctly identify how these different constituent forces are

interconnected to each other (grasping any reciprocal causal mechanism), would then

allow us to make any system much more predictable.

The causal analysis of any dynamical system can then be summarised by the following

workflow (Figure 2.5).

Figure 2.5: Dynamical Systems Analysis (Adapted from [13])



11 Chapter 2. Background Theory

2.3 Bayesian Belief Networks

Bayesian Belief Networks (BBN) are a type of probabilistic model which makes use

of simplifying assumptions to reliably define connections between different elements

and calculate their probabilities relationships efficiently. By analysing interactions

between the different elements, we can finally make use of these type of models in

order to discover causal relationships.

In a Bayesian Network, nodes represent variables while edges report the probabilistic

connections between the different elements. A simple example of a three variables

Bayesian Belief Network is available in Figure 2.6.

Figure 2.6: Bayesian Belief Network

Bayesian Belief Networks led later to the development of Causal Networks. In fact,

they can also be considered as a Causal Network in some specific cases. For this

reason, Bayesian Belief Networks are considered to be one of the main techniques

which can be used in Machine Learning in order to move from the Association to

the Intervention level in the Causality Hierarchy (Figure 2.1).

Bayesian Belief Networks are able to express both conditional dependent and in-

dependent variables connections. These type of networks follow additionally the

Markov condition [14] (provided the parents of every node in a network, each node

is conditionally independent of their nondescendent nodes). Finally, using Bayes

probabilistic approach (Equation 2.1), we can update the connection probabilities
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iteratively based on new gathered evidence.

P (A|B) =
P (B|A)× P (A)

P (B)
(2.1)

where: A,B Events

P (B|A) Likelihood

P (A) Prior

P (B) Normalizing Constant

P (A|B) Posterior

Complex BBNs can be constructed by starting from three basic types of junctions:

Chains (e.g. A⇒ B ⇒ C), Forks (e.g. A⇐ B ⇒ C) and Colliders (e.g. A⇒ B ⇐

C). Making use of the three types of junctions and of a technique called d-separation,

it can then be possible to reach the Counterfactuals level in the Causality Hierarchy

[12]. D-separation, allow us in fact to understand, in Causal Diagrams, if a set of

variables is independent of another set when given a third one.

What distinguishes Bayesian statistic from the classical frequentistic approach is

that we allow to incorporate some level of subjectivity in our modeliii (by combining

prior knowledge with evidences). Additionally, in Bayesian statistics, the weight of

our prior belief gradually vanishes as more data is provided (therefore converging to

the frequentistic approach if given an unlimited amount of data). This case doesn’t

instead hold true when talking about causality analysis.

Great research focus by companies such as DeepMind is currently put into using

Bayesian Belief Networks as a starting point in order to create Causal Bayesian Net-

works (CBN) [15]. Causal Bayesian Networks, are used in order to visually identify

and quantitatively measure unfairness patterns in datasets (elements in the data

which can lead to Machine Learning models biased towards specific subcategories).

Additionally, researches also demonstrated the possibility to use Causal Bayesian

Networks in order to identify if not just the recorded data but also the Machine

Learning models itself are biased or not towards specific classes [16].

iiiFrequentistic probability aims instead for complete objectiveness.
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2.4 Intervention

What allows us to talk about cause and effect are experiments. Experiments are a set

of procedures carried out under controlled conditions so that to test an hypothesis

and try to undercover causes. Controlling the conditions of an experiment can allow

us in fact to eliminate any alternative explanations which we might have about how a

phenomena works. When creating an experiment, we need to make sure that different

treatments are applied and that they are randomly assigned [17]. In an experiment,

a treatment is defined to be as a change imposed from us to the environment of the

experiment. Treatments should additionally be randomly assigned in order to make

up for any variability in the environment space (e.g. different individuals/objects

might have different characteristics). Finally, if working with just a sample from

a population, it is necessary to make sure that the available sample size is large

enough to be representative of the whole population. If all these characteristics are

provided, then we can be able to accurately discover causal relationships even under

uncertainty. Therefore, experiments play a key role in order for us to move between

the different levels in the Causality Hierarchy (Figure 2.1). If any of the conditions

doesn’t instead hold true, we might end up accidentally adding some form of bias in

our experiment. Without experiments, data driven decisions can just be backed by

correlations and domain knowledge, but no pure evidences.

One of the main differences between Causal Diagrams and Bayesian Belief Networks

is that the former are able to deal with interventions, while the latter works only

with observations. Interventions allows us to use Causal Inference, while observations

allows us to make predictions. What makes possible for Causal Diagrams to work

with interventions is the Do Operator. From the Do Operator, it is then possible to

create the Do Calculus which has been demonstrated to be complete as a technique (if

Do Calculus is not able to identify an effect, then this cannot be identified anywhere

else). On the other hand, what makes it difficult to use Causal Diagrams is making

sure they are designed correctly. In fact, different Causal Diagrams can potentially

be proposed in order to describe a process and depending from different point of view,
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it can be difficult to understand which one is able to better capture the underlying

dynamics of a process.

For example, let’s imagine we have carried out a study in order to find out if a diet

can bring a positive effect (above the average) on the overall well-being of a sample

in a population. Therefore, we divide the participants of this experiment into two

groups: one which will strictly follow the diet and the other one which will instead

follow common used diet-lifestyles. From this study, it might result that following

the diet causes a positive effect to the individuals’ well-being (Figure 2.7).

Figure 2.7: Simple Causal Diagram

Although, at this point we might start having some doubts about if there could

be any potential pitfall in our analysis. One possible approach in order to test for

the presence of confounding variables, is to take measurements about the suspected

hidden variable (in this way, we can be able to fill any missing piece in our diagram).

Carrying out a controlled experiment, we will be able to deconfound any true and

”spurious” effect this hidden variable might cause. In the case of our example,

we could for instance notice that the group which followed the diet had an overall

younger age than the other group. Therefore, age could be considered as a possible

factor which has skewed our early results and that we should therefore take into

account (Figure 2.8).

Figure 2.8: Improved Causal Diagram

Our confounding variable (Age) could then be deconfounded by comparing the two

different groups of the experiment for different age groups, averaging the results

and weight the different age groups sections by their percentage presence in the
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population composing the experiment. This procedure is commonly referred as ad-

justing/controlling for a variable [12]. Examining the results of our analysis, we

could then think there might be some other variables missing and repeat this process

again to improve our representation of the system. A confounding can therefore be

defined to be as anything making P (A|B) different from P (A|do(B)).

In a causal diagram information can flow through links from one vertex to another in

two different directions (causal and non-causal). In this setting, information flowing

in the non-causal direction can then lead to the creation of confoundings. In order to

avoid this problem, information flowing in the non-causal direction can be blocked

by using either of the following three approaches:

• Accurate controlled experiment randomization.

• Statistical variable adjustments.

• Applying the Do Operator on a variable, can stop the flow of information in

the non-causal direction (this procedure can also be applied when working with

observational data).

Finally, information flow in causal diagrams is regulated by the same type of junc-

tions introduced in Section 2.3. Controlling for different variables in these types of

junctions (to prevent presence of confoundings), would then lead to the following

results:

• A⇒ B ⇒ C: controlling B would stop information to flow between A and C.

• A ⇐ B ⇒ C: like in the previous case, controlling B would stop information

to flow between A and C.

• A ⇒ B ⇐ C: controlling B would in this case enable information to flow

between A and C (without intervention, no information would have been able

to flow).

Making use of this set of information, it can then be possible to create and work

with a multitude of different causal diagrams.
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2.4.1 A/B Testing

A/B Testing is one of the most common forms of experimentation in Computer

Science. Companies make common use of A/B Testing, for instance when shipping

a new feature in production. For example, a company might come up with a new

design for a section on an App. To a randomised half of the users it is going to be

proposed the new version (Treatment Group), while to the other half it is going to be

proposed the original version (Control Group). After collecting users behaviours and

feedback, it could then be possible to observe the causal effects of our interventions.

This type of approach is analogous to how vaccines/drugs are evaluated in clinical

trials.

2.5 Counterfactuals

Carrying out experiments can be difficult and expensive in different real-life situa-

tions, in which case, we can perform just observational studies (we don’t exercise

any control on our independent variable). When working with observational data,

changes between the control and treatment groups become counterfactual, there-

fore making difficult to uncover causal effects. Due to these limiting circumstances,

it is then necessary to make some assumptions in order to create an approxima-

tion model able to make predictions. Counterfactual analysis focuses then on how

different types of interventions could have retrospectively led to different outcomes

(imagining alternative ”worlds”).

Some examples of Counterfactuals types of questions are: Would the patient have

survived without taking any medication? How likely it is that a political party would

have won the elections if it had proposed a more liberal policy than the advertised

one?

Because of the nature of these types of questions, it can be difficult to provide

answers with full certainty. Therefore, some form of probabilistic mechanism needs

to be incorporated (e.g. We are 90% confident that choosing a more liberal policy

would have increased the chances of winning the elections by 7%).
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One of the main applications of Counterfactuals is mediation analysis. Mediation

analysis is based on the concept of mediating variables (variables used to influence

an outcome based on the effect of an applied treatment). An example of a mediating

variable can be V itaminA in EatingCarrots⇒ V itaminA⇒ ImprovedEyeSight.

The aim of mediation analysis in this setting would then be to understand if the me-

diating variable is able to capture all the effects caused by the treatment variable

(EatingCarrots) or not. Effects can then either reach our outcome variable directly

or indirectly (through the mediating variable). Direct effects could then be repre-

sented in our example as moving through the following diagram without the need

of mediating variables: Eating Carrots ⇒ Improved Eye Sight. Using mediation

analysis we could then be able for example to find out if eating carrots is possible

to improve our eye sight just by the increase of Vitamin A resources or through any

other effect.

What makes mediation analysis an interesting field of research is the fact that the

total effect exercised by a variable is not simply equal to the sum of its exercised

direct and indirect effects in the case of third party variables interactions.

Examples of other techniques ideated during the course of the last decade in order

to try to solve Counterfactual problems are [18]:

• Ordinary Least Squares with Confounding Variables

• Propensity Score Matching

• Instrumental Variables

• Difference in Differences

2.6 Causality in Machine Learning

The core principles which characterise Machine Learning are closely related to Statis-

tics, in which we aim to undercover properties from an unknown distribution by sam-

pling independent and identically distributed (IID) random variables from it. What
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makes Causal Inference more difficult to apply is the assumption that direct depen-

dencies in the data exists (inferring a causal structure from just data can therefore

be a challenging task). On the other hand, causal tools can allow us to go beyond

mere statistical associations, providing us with more insightful and powerful models.

Some example applications areas of Causality in Machine Learning are [19]:

• Semi-supervised learning.

• Half-Sibling Regression.

• Time Series Analysis (e.g. Granger causality).

• Reinforcement Learning.

2.6.1 Case Study: Recommendation Systems

One of the main weakness of most Machine Learning models is the assumption that

the data fed in is independent and identically distributed. When this assumption

holds, convergence to the lowest possible loss is achievable but when this constrain

is violated, the model might perform poorly even when attempting simple tasks (e.g.

poisoning attacks) [20]. As an example, let us consider an e-commerce recommen-

dation system. Nowadays, systems are able to offer recommendations mainly based

on products correlated to the ones we are planning to buy, although this cannot

always lead to accurate estimates. For instance, we might have recently bought a

new phone and we are now looking for a phone case. While browsing for phone cases,

although our recommendation system might try to suggest us other items such as

phones (just because they are correlated) instead of more cause-effect related items

like screen protectors.
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Epidemic Modelling

3.1 Motivations

Modelling is a technique commonly used in order to approximate an environmen-

t/system to gain insights and better understand possible outcome scenarios especially

in situations when we don’t have data available about the topic. Some examples of

applications in which modelling is commonly applied are: climate change, military

defense, designing cities, infecting diseases development and testing financial policies.

Using modelling simulations can be of great help when trying to answer different

types of causal questions about our research topic (e.g. varying the different simula-

tion parameters, it can be possible to see how these are related each other and how

they effect the overall outcome).

As part of this study, an interactive online web application i has been developed in

order to quickly analyse in real time COVID-19 developments and simulate different

scenarios and approaches which can be taken in order to mitigate the consequences

of the outbreak. Most of the provided models have been designed so to be flexible

enough to model any other type of possible future infectious disease.

Additionally, a secondary website has been created using GitHub Pages in order to

share additional notebooks and animations in Python and Julia ii (Appendix D).

3.2 Introduction to Epidemiology

3.2.1 Different Classes of Diseases

Infectious diseases can mainly be classified into three different categories depending

on their characteristics [21]:

1. Endemic: an endemic is a health concern which is constantly present at a low

iWeb Application Link: http://3.22.240.181:8501/
iiGitHub Pages Website Link: https://pierpaolo28.github.io/Epidemics-Modelling/

19

http://3.22.240.181:8501/
https://pierpaolo28.github.io/Epidemics-Modelling/
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rate within a population (its presence doesn’t either substantially increase or

decline). Some examples of endemics are Malaria and Chicken Pox.

2. Epidemic: an epidemic is a health issue which can cause a fast and unforeseen

increase in cases within a population. An example of epidemic, can be consid-

ered to be the seasonal flu, which can lead to a sharp increase in the number

of infected at specific times of the year.

3. Pandemic: epidemics can finally later become pandemics if they manage to

spread around the world and affect a great number of people. Some examples

of pandemics are the Spanish Flu and COVID-19.

3.2.2 Exponential vs Logistic Growth

Pandemics usually develop due to a disease’s ability to spread at an exponential

rate. In the case of COVID-19, the number of cases from one day to the next was

in fact equal to the number of current cases multiplied by some constant between

1.25-1.5 (depending on factors such as population density and restrictions in place).

The change in the number of cases from a day to another, can then be defined by

the following equation [22]:

∆Nd = E × p×Nd (3.1)

Where E represents the average number of people we are exposed to every day, p

represents the probability that an exposure might lead to an infection and Nd is the

number of cases as of today. Therefore, in this type of situation, the only possible

way to try to slow down our exponential trend is by decreasing E and p. In order to

make this possible, different techniques such as track and trace, social distancing and

travel restrictions can be applied. Although, even if no intervention at all is done,

an exponential trend is destined to convert to a logistic curve once a large number of

the population gets infected by the disease (in fact, the probability that an exposure

can lead to an infect automatically decreases if the majority of the population and

the people we meet are already infected). Applying any type of restriction would
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then help us in making it feasible to reach our inflection point between these two

trends as soon as possible.

Exponential growths can be easier to inspect when plotting on a logarithmic scale.

Using this type of graph, an exponential curve would then look like approximately

a straight line. As we can see from the graph on the left of Figure 3.1, all the

different considered countries follow at first the same exponential pattern which

then seems to start converting into a logistic curve. The graph on the right of Figure

3.1, was designed in order to try to amplify this change [23]. While going through

an exponential growth, it can be difficult to understand how long it will last (if

the growth is going to still keep being exponential or is going to start decaying).

One possible way to approach this problem is to focus our attention on the rate

of change in new cases from one week to another. Plotting this with both axis on

a logarithmic scale, we would then clearly see that all the different countries have

the same linear growth in cases. Although, using some form of containment, some of

these countries are successfully able to escape from this linear growth in cases. Using

this type of approach, we can successfully emphasize the deviation in the growth of

an exponential curve.

Figure 3.1: Exponential Growth Evolution (COVID-19, 28th June 2020)

Using the logarithmic linear graphs, we could then perform a linear regression to find

the line of best fit and find out how many days it takes for cases to increase by a fixed

constant. Finally, using metrics such as the R2 score, we could then quantitatively

measure how far are our curves from an exponential curve.

Another way to understand if we are reaching the end of an exponential curve is by

examining the slope (Growth Factor, Equation 3.2).
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Growth Factor =
∆Nd

∆Nd−1
(3.2)

A growth factor of more than one will show us that we are still going through an

exponential growth, while a growth factor equal to one can tell us we might now be

approaching our inflection point.

A worked out example of logistic/exponential curve fitting on real world Coronavirus

data, is Available in Appendix C.

3.2.3 Quantifying the spread of a disease

One of the main units used to measure how easily a disease is able to diffuse in a

community is the ”Effective Reproductive Number” (R), which is measured as the

average number of people infected by each individual carrying the disease. In a fully

susceptible population, R is also referred as R0 (”Basic reproductive Number”). The

Basic reproductive Number for COVID-19 is currently estimated to be around 2.5.

As shown in Equation 3.3, R0 can be calculated as the number of people someone

positive to the disease can infect each day (β) multiplied by the number of days

each person remains positive to the disease (D). Equivalently, R0 can also be esti-

mated as the number of people someone positive to the disease can infect each day

multiplied by the proportion of individuals infected recovering each day (γ = 1/D).

Furthermore, as shown in Equation 3.4, β can be also calculated to be equal to the

probability that an exposure might lead to an infection (p) multiplied by the average

number of people we are exposed to every day (E) [24].

R0 = β ×D =
β

γ
(3.3)

β = E × p (3.4)

If R is greater than one, then the disease is still in the exponentially growing phase

(we have an epidemic), if R is instead equal to one we are then in an endemic

(therefore the number of cases stays approximately constant) and if R is less than
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one, we are finally in the eradication phase and the disease could disappear entirely

soon from our population.

One of the most common approaches to eradicate a disease is through Herd Immunity.

The percentage proportion of the individuals in a population necessary to reach Herd

Immunity can be estimated using Equation 3.5. In the case of COVID-19, this is

estimated to be around 60%. Herd Immunity can potentially be achieved either

through vaccination or natural selection [25].

Herd Immunity (H.I.) = 1− 1

R0

(3.5)

Different typology’s of Epidemics Modelling have been developed in the past few

years, such as:

• Compartmental Models

• Agent Based Models

• Network Models

• Meta-populations Models

In this chapter, we will explore the first two approaches.

3.3 Compartmental Models

In Compartmental Models it is assumed that each individual in a population is

assigned to a compartment. During the course of the simulations, individuals can

then be free to move from one compartment to another depending on the dynamics

of the model. Some examples of common departments in Epidemic Modelling are:

Susceptible, Exposed, Infectious, Recovered, Dead, Vaccinated, etc...

These models can be designed using either ordinary differential equations or stochas-

tic elements as well. Diagrams representations of this type of models can be of great

help in order to understand how the model equations works and what are the pos-

sible movements between different states. In Appendix E, are additionally available

the Causal Diagrams equivalent representation of the implemented Compartmental

Models.
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3.3.1 SIR (Susceptible-Infected-Recovered)

Causal Question: How does the number of people I am in contact with on average

in a day affect the evolution of the pandemic?

Experimental Results: The SIR model is one of the most widely used epidemiol-

ogy model and is composed by just three different compartments: Susceptible (S),

Infected (I) and Recovered (R). This model can be described by the following three

formulas, where N is the total number of elements in the population, β represents

the average amount of people an infected element can be able to infect in a day and

γ the percentage of how many individuals recover from the disease each day.

∂S

∂t
= −β × I × S

N
(3.6)

∂I

∂t
= β × I × S

N
− γ × I (3.7)

∂R

∂t
= γ × I (3.8)

In order to better visualise the situation, this set of equations can then be converted

into a block diagram representation using the following structure (Figure 3.2).

Figure 3.2: Compartmental Models Diagram Representation

Therefore, in order to move from one compartment to another, we need to take into

consideration how long would this transaction take (Rate), the probability that it

will actually happen for each individual (Probability) and the portion of individu-

als for which this transition takes place (Individuals). Converting our SIR set of

equations into this representation, we can then obtain the diagram in Figure 3.3.

When converting between these two representations, we can then see how a minus

sign in the Ordinary Differential Equation (ODE) corresponds to an arrow leaving
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that compartment, while a plus sign corresponds to an arrow pointing towards that

compartment. This same procedure can then be used in order to design any other

type of compartmental model.

Figure 3.3: SIR Diagram Representation

Using the parameters in Table 3.1, it can then be possible to obtain the results in

Figure 3.4.

Parameter Type Value
Population Size 100
Number of Days 100

Number of individuals originally infected 3
Number of individuals at close contact in a day 5

Probability of infection if in contact with an infected 0.1%
Number of days a the disease can last 7

Table 3.1: SIR Model Parameters

Figure 3.4: SIR Model

Experimental results demonstrated that even slight increases in the number of people

individuals are in contact with on average in a day can cause major changes in the

possible evolution of the pandemic, leading to higher peaks in the curve of infected

and possibly overwhelming hospitalization systems.
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3.3.2 SEIR (Susceptible-Exposed-Infected-Recovered)

In order to make our model more realistic, we can then add an additional state

E representing all the population elements which are still in the incubation stage

before becoming infected. To apply these modifications, we just need to update ∂I
∂t

and add this extra stage just before it. The only variable which needs to be added

compared to the SIR model is the proportion of how many individuals move from

the incubation period to being infected (δ =
1

Days of incubation
).

∂E

∂t
= β × I × S

N
− δ × E (3.9)

∂I

∂t
= δ × E ×−γ × I (3.10)

Following the same procedure as for the SIR model, we can then convert our SEIR

model in block diagram form (Figure 3.5).

Figure 3.5: SEIR Diagram Representation

Using the same parameters as in Table 3.1, and choosing one day as the number of

incubation days for the disease, can then be produced the results in Figure 3.6.

Figure 3.6: SEIR Modelling
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3.3.3 Advanced SEIR Modelling

Causal Question: What are the effects of varying social distancing measures over

time using different approaches (landscapes)? Given some user defined population

age distribution, how would that effect the overall number of deaths?

Experimental Results: Starting from the developed SEIR Model, it can now be

possible to add more compartments and make different elements time-dependent so

to better capture real-world dynamics. The main additions engineered in this model

are:

• Take into account the portion of infected individuals whom die instead of re-

cover. This can be done by adding a new compartment after the Infected Stage

and introducing two new variables ρ (the rate, in terms of days, which takes on

average to die) and α (the disease death rate) which determines the probability

an individual infected might either die or recover.

• R0 is not anymore static but dynamically changes over time. In this example,

two functions have been used in order to simulate R0 behaviour over time: a

Sigmoid or Sinusoidal. In this way, we are now able to model how a government

might react in order to control the spread of the disease by exercising social

distancing measures. A Sigmoid in it’s minimum point can in fact represent

a lock-down and the smoothness by which it reaches its minimum can easily

represent how gradually the restrictions have been applied. An additional pa-

rameter is provided in order to decide from what day onward to start applying

the restrictions (so that to observe what could be the consequences of a late or

early intervention). The Sinusoidal landscape, can instead be used in order to

model possible sequential waves a disease can lead to. Because, β is dependent

on R0, this will be indicated to be our time dependent variable in our set of

ODEs.

• Also the death rate has been designed to be time and age dependent. To

each different age group is assigned a different base death rate (the older, the
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greater), which increases linearly with the increase in the number of infected

at each time-step. Therefore, higher peaks of individuals infected all at the

same time increases the likelihood of each individual to die (mimicking strained

healthcare system which doesn’t have enough resources to cure everyone at the

same time).

The main equations summarising the flow between the different compartments can

be summarised as:

∂S

∂t
= −β(t)× I × S

N
(3.11)

∂E

∂t
= β(t)× I × S

N
− δ × E (3.12)

∂I

∂t
= δ × E − (1− α(t))× γ × I − α(t)× ρ× I (3.13)

∂R

∂t
= (1− α(t))× γ × I (3.14)

∂D

∂t
= α(t)× ρ× I (3.15)

Which results in the following diagram flow architecture:

Figure 3.7: Advanced SEIR Diagram Representation

More specifically, the adaptive R0 for the Sigmoid case has been designed to be equal

to Equation 3.16.

R0(t) =
Rstart −Rend

1 + exp−k(−x+x0)
−Rend (3.16)
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where: Rstart, Rend Initial and desired final value for R0 in the sigmoid

x0 Sigmoid inflection point date

k Defines how drastically rapidly the restrictions have been applied

Following from our R0(t) calculation, β(t) can then be estimated to be equal to:

β(t) = R0(t)×
1

α× 1
ρ

+ (1− α)× 1
γ

(3.17)

In the case of a Sinusoidal landscape, R0 has instead designed to be dependent on

the following expression:

R0(t) = Oscillatory Scale× sin

(
x

N Simulation Days
10

)
+Oscillatory Scale+ 1

(3.18)

In this way, R0 is designed to always go through two peaks and one low for any

type of possible simulation. Using an Oscillatory Scale of 1, the peaks will be equal

to an R value of 3, while the low would be equal to 1. Increasing the value of the

Oscillatory Scale, will then lead to higher values for our landscape peaks.

Finally, in order to make our death rate time variant and dependent on the population

age and number of infected cases at the same time, the following expression has been

used:

α(t) = s× I(t)

N
+ αopt (3.19)

where: s Regulates in what proportion the death rate rises when the number of

infected increases.

αopt The death rate calculated depending on the population age.

Overall older populations will therefore have an higher base death rate

than younger populations.

This advanced SEIR version has been inspired by Henri Froese’s [24] work.

Starting with the same parameters already specified for the SIR and standard SEIR

model we can then specify the number of days the disease can take to become lethal
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to be equal to 3 and the percentage weight of age on the death rate to 30%.

The proportions of individuals within different age ranges could then be specified as

shown in 3.2.

Demographic
Age

0-20 20-50 50-70 70-110
Proportion Percentage (%) 0.15 0.25 0.4 0.2

Table 3.2: Population Demographics

In the case of the Sigmoid Landscape, using the parameters in Table 3.3, it has been

possible to record the results in Figure 3.8.

Parameter Type Value
Social Distancing start date 20

Percentage weight of how rapidly the restrictions are applied 30%
Maximum possible R value 5
Minimum possible R value 1

Table 3.3: Sigmoid Landscape Parameters

Figure 3.8: Advanced SEIR (Sigmoid) Modelling

Using instead the Sinusoidal landscape and a scaling factor of 2, have been registered

the results in Figure 3.9.
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Figure 3.9: Advanced SEIR (Sinusoidal) Modelling

3.3.4 Time Limited Immunity and Vaccination Modelling

3.3.4.1 Time Limited Immunity

Causal Question: What if recovered patients could be infected again? Could it be

possible to eradicate the disease?

Experimental Results: Updating our SIR model (Section 3.3.1), we can then be

able to take into account the possibility that individuals might not gain lifetime

immunity from a disease when recovering from it, but that they might instead be

re-infected again in the future after some time. The amount of time an individual

might be immune from a disease can be represented by just adding a new variable

to our model (v) [26].

∂S

∂t
= −β × I × S

N
+ v ×R (3.20)

∂I

∂t
= β × I × S

N
− γ × I (3.21)

∂R

∂t
= γ × I − v ×R (3.22)
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Converting our set of equations into a Block Diagram representation, will then result

in Figure 3.10.

Figure 3.10: SIR Time Limited Immunity Diagram Representation

Using the same SIR model parameters as in Table 3.1, setting to 25 the maximum

number of days the immunity to the disease can last, we can then produce the

following results in Figure 3.11.

Figure 3.11: Time Limited Immunity Modelling

As can be seen from our experimental results, having a low time limited immunity

would make it almost impossible to eradicate the disease from the population.

3.3.4.2 Vaccination

Causal Question: Adding vaccination to this model, would that make possible to

eradicate the disease even with low time-limited immunity?

Experimental Results: Extending our set of equations (adding an extra stage ∂V
∂t

),

we can be able to take into account how an epidemic will evolve once a vaccine is
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available. In order to apply these modifications, we just need to update ∂S
∂t

and add

the vaccination stage just after it. To make the simulation more realistic, we can then

also specify from when in time a vaccine could start being distributed and how fast

it can produced and shipped (p). Finally, a stage used to record the possible amount

of deaths is included (using the same notation for the Advanced SEIR models).

∂S

∂t
= −β × I × S

N
+ v ×R− p× S (3.23)

∂V

∂t
= p× S (3.24)

∂I

∂t
= β × I × S

N
− (1− α)× γ × I − α× ρ× I (3.25)

∂R

∂t
= (1− α)× γ × I − v ×R (3.26)

∂D

∂t
= α× ρ× I (3.27)

Converting our set of equations into a Block Diagram representation, we can then

obtain Figure 3.12.

Figure 3.12: SIR Time Limited Immunity and Vaccination Diagram Representation
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Extending our set of parameters used for the Time Limited Immunity model, using

the values from Table 3.4, it has been possible to obtain the results in Figure 3.13.

Parameter Type Value
Number of days the disease can take to become lethal 5

Death rate 0.2%
Number of Days to start Vaccine Distribution 30

Vaccine Distribution rate 0.1%

Table 3.4: SIR Vaccination Model Parameters

Figure 3.13: Vaccination Modelling

Making use of the provided Time Limited Immunity and Vaccination models, in

conjunction with Equation 3.5, it could then be possible to get estimates of what

proportion of the population would be necessary in order to gain Herd Immunity.

Adding vaccination in our model (especially in an early stage and distributing it at

a high rate), would therefore make it possible to completely eradicate a disease even

in the case of low time-limited immunity [27].

3.3.5 Coronavirus Modelling

In order to test on real world data one of the created models, the architecture of

the Advanced SEIR model outlined in Section 3.3.3 has been tested. The different

parameters of the model, have then been personalised depending on the examined

country specifics.

In order to do so, information about a large number of countries population size

and demographics has been processed making use of the United Nations World Pop-
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ulation Prospects 2019 dataset [28]. Additionally, information about the number

of hospital beds available for 1000 people for each country has been used from the

The World Bank Data Hospital Beds dataset [29], in order to calculate estimates of

when hospitals in different countries might get overwhelmed and how many avoid-

able deaths would that cause. Finally, an estimation of the number of actual cases

for each country has been calculated using the approach outlined in ”Substantial un-

documented infection facilitates the rapid dissemination of novel coronavirus (SARS-

CoV-2)” [30].

3.3.5.1 Germany Case Study

Causal Question: How can we prevent a healthcare system becoming overwhelmed?

How many lives could be saved?

Experimental Results: As of the second of July 2020, Germany Coronavirus

record can be summarised as in Figure 3.14. Germany has a total population of

84 millions and the total number of estimated cases has been calculated taking in

consideration that about 86% of the total Coronavirus cases have been estimated to

have been undocumented [30] in China.

Figure 3.14: Germany Statistics

Another point, which could be necessary to take into account in order to understand

the true number of cases in a country, is the possibility of false positives and false

negatives during testing. More accurate estimates can be calculated using Bayes Rule

and the Law of Total Probability (Equation 3.28). For instance, if a patient does a

Coronavirus test and results positive, what are its chances that he/she actually has

Coronavirus?

P (B|A) =
P (A|B)× P (B)

P (A)
=

P (A|B)× P (B)

P (A|B)× P (B) + P (A|B)× P (B)
(3.28)

In this example, we are going to take into consideration the COVID-19: Roche

Antibody Test [31]. This test has an estimated sensitivity of 100% (ability to cor-
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rectly identify patients with the disease) and specificity of 99.8% (ability to correctly

identify patients without the disease). Assuming a prevalence of the disease in the

population of about 5%, the following estimates can be calculated:

P (B|A) =
1× 0.05

1× 0.05 + 0.002× 0.95
= 96.33% (3.29)

If the test is positive, there would be a 96.33% probability the patient actually has

Coronavirus. As can be seen from Equation 3.28, the rate of the Coronavirus cases

in a population, plays an important factor.

An example of a simulation run using Germany as case study is available in Figure

3.15. As can be noticed, the key difference between 3.15 and 3.8 is the fact that we

are taking into account this time also when the healthcare system of the selected

country runs out of beds for critical patients. This can be of vital help in order to

understand to what extent the healthcare system can be able to provide support the

all the patients in need at any point in the pandemic and how many deaths could be

avoided.

Figure 3.15: Germany Simulation
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Additionally, an estimate of the number of beds needed to go through the peak of

the simulated pandemic while providing support for all the critically ill patients is

provided in Figure 3.16 alongside with the current number of beds available.

Figure 3.16: Germany Hospital Beds Analysis

Finally, it is calculated an automatic estimation of the parameters of the Advanced

SEIR model, given the provided data (Figure 3.17). This estimation is computed

using non-linear least squares and the final R2 score is provided as metric for the

convergence of the fitted curve compared to the original one. According to these

estimates, thanks to public health restrictions, Germany’s R value, varied from a

maximum of 6.37 to a minimum of 1.45 during the last 5 months.

Figure 3.17: Advanced SEIR Parameters Estimation
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3.4 Agent Based Models

An alternative approach which can be used in order to simulate compartmental-like

models is by creating an Agent Based simulation. In this case, each single individual

in the population is created following an Object Oriented Programming approach

(e.g. using a programming class) and it’s behaviour in an environment while in

contact with the rest of the population is simulated. Using this type of approach

can therefore enable us to keep track of the position of the different individuals in

a population and attribute them different characteristics such as an age or daily

income. Similar results could be obtained using standard compartmental models by

converting our Ordinary Differential Equations into Partial Differential Equations

and making them dependent on both time and space [32].

The proposed Agent Based Model, is directly inspired from The Epidemiological

Triad paradigm (Figure 3.18).

Figure 3.18: The Epidemiological Triad

3.4.1 Population Modelling

Causal Question: How does population density and community distribution affect

the spread of a disease?

Experimental Results: As described in Section 3.2.2, the number of new cases can

vary according to Equation 3.1. Therefore, the only way we can be able to decrease

the number of cases, is by decreasing the values of E and p.
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• E can decrease if travelling and meetings of people are reduced as much as

possible.

• p can be reduced instead for example by making it less likely to catch the

disease by taking precautions such as washing hands, wearing masks, avoid

touching our faces, etc...

This trend can be observed in the following proposed model (Appendix F) by the

Contact Radius (E) and Probability of how unlikely it is to spread the

virus if within the contact radius (complementary of p) variables. In this way,

causal effects of social distancing and improved hygiene can be easily inspected.

Furthermore, the role of dividing individuals in different communities is addition-

ally studied. Having different communities with a central shared point and random

infected initialization can in fact resemble how contagious disease hot-spots can be

created.

An example output of this type of simulation, is available in Figure 3.19.

Figure 3.19: Population Modelling

In this type of model, each individual is born with unique combination of character-

istics such as: their situation (susceptible to the virus, positive, recovered or dead),

position in X and Y coordinates on a grid which represents their world, the speed
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with which they move and the X and Y directions at which they point to (e.g. mim-

icking individuals commuting from one place to another every time), a counter used

to keep track of how many days of rehabilitation an individual went through with

the virus and the individual age (the greater the age, the more likely to die).

An original death probability is assigned to each individual, indicating the probability

someone would have to die for any general reason (this base probability is then

increased depending on age if being affected by the virus). In this case, the death

probability is defined as:

Updated Death Probability = Death Probability × (
Age

100
+ 1) (3.30)

For example, if a 50 years old individual has a base probability to die of 1%, this will

be increased because of the virus to 1.5%. Additionally, a Boolean value (Static)

can be used in order to make the population static (therefore mimicking the effect

of being permanently in a same location in order to avoid spreading the virus).

During each iteration, using the Euclidean Distance in Equation 3.31, it is measured

how close each individual is with the others in the space and if it is close to some

people affected by the virus (within the defined Contact Radius). The number of

occurrences are then counted and the more they are and the more likely it will be

that the individual will catch the virus (how likely it is that someone can catch the

virus is additionally dependent on the specified probability of how unlikely it is to

catch the virus - the lower it is and the more likely we will become infected).

d =
√

(x2 − x1)2 + (y2 − y1)2 (3.31)

Additionally, with each iteration, it is registered how many individuals are affected

by the virus. With each iteration, depending on the mortality probability, different

individuals might die and if an individual survives for 14 iterations without dying,

it is then considered as a survivor (recovered).

Successively, depending on the speed and the travelling direction, the position of

all the different individuals is updated. Additional conditions are imposed if an
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individual reaches an edge of the grid in order to make it bounce back (therefore

inverting the direction of movement). All the different metrics are then stored in

order to produce the plots.

To simulate different separated communities, the population has been divided into

groups which all have different grid limits within which they can move. Creating sub-

populations with overlapping grid limits, individuals can then be allowed to move

from one subset to another. The overall workflow is summarised in Appendix F.

3.4.2 Track and Tracing

Causal Question: What if instead of using social distancing we would try to in-

crease our test capacity and successfully track and isolate all the infected people and

the ones they have been in contact with? How would this system change if a portion

of individuals would remain un-tracked?

Experimental Results: Track and Tracing can be considered to be the most effec-

tive approach in order to take under control a pandemic. Although, one of the main

limitations of this approach, is that in less lethal diseases it might be difficult to

correctly identify in time all the individuals infected (some might be asymptomatic).

Developing contact tracing apps using cryptography could therefore enable us to

keep our privacy intact whilst reducing the risk of spreading the disease.

In the following model, it is presented how an epidemic might evolve if all the in-

fected individuals are successfully identified and then make their way to a quarantine

location designed for all the individuals affected by the disease. Individuals are rep-

resented with different associated velocities in order to simulate the fact that some

might be tracked before others and might interact with susceptible individuals along

the way.

As we can see from Figure 3.20, using this type of technique, led to a sharp decrease

in the overall number of deaths (17) and infected than our general model. In this

case, has been created a scenario with four different communities and a fraction of

individuals allowed to move between different hubs.
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Figure 3.20: Perfect Track and Tracing

The following model extends instead the first model by adding a probability value

that some individuals might not get traced at all and might therefore end up spread-

ing the disease (e.g. Coronavirus asymptomatic or limited available testing capacity).

An example simulation result using a 50% probability to not be traced is shown in

Figure 3.21. As the results demonstrated, allowing even a small portion of un-tracked

infected individuals, can potentially lead to far worse scenarios compared to Figure

3.20. Analogous results have been registered also in [33].

Figure 3.21: Imperfect Track and Tracing
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3.4.3 Central Hubs

Causal Question: How does having a central hub visited by different communities

members affect the spread of the disease?

Experimental Results: Imposing travel restrictions can greatly help in lowering

the rate at which a disease can spread. Individuals although still have at times

to visit centrals hubs such as supermarkets during lock-downs. In this simulation,

we can easily observe how having even just a single central hub can lead to a fast

spreading of the disease across different communities.

As the results show in Figure 3.22, allowing about 30% of the population to visit

a central hub can potentially be quite dangerous because if anyone in the hub is

effected, it can then easily allow to spread the disease to individuals belonging to

different communities. Possible outcomes in this type of situation, can greatly vary

from different runs, depending on causalities and random initialization.

Figure 3.22: Single Central Hub

One of the most efficient strategies in order to make central hubs safer, would be

to make sure that all the individuals that travel to the hub are virus-free, therefore

making it impossible to spread the disease across different communities through the

central hub.
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3.4.4 Finance Simulation

Causal Question: How can social distancing techniques affect a community econ-

omy? Which social classes would suffer the greatest impact?

Experimental Results: Applying different types of social distancing and limited

movement restrictions, could potentially lead to a good containment of the spreading

of a disease, but also to a major shrink of the whole economy. In the following

simulation, two main types of responses are simulated: no containment at all or

imposing a hard lock-down. In order to keep track of the economic consequences

of these two different approaches, the created population has been divided into 3

different classes: Working Class, Middle Class and Upper Class. Which have assigned

different types of incomes and expenses they have to pay on daily basis depending

on their income. The government offers the opportunity to give financial support

on daily basis in case any of the citizens are struggling to pay their expenses. In a

fully functioning society, most of the citizen are able to pay their expenses without

having to use their savings or ask for help. As restrictions are imposed and freedom

of movement is limited, citizens can only continue earning and being self-sufficient

if they are able to work from home. Otherwise, they will have to make use of their

savings and of the government support provided. The financial support covers just

the daily expenses and can be asked every day. Because of the nature of their work,

middle and higher class workers are more likely be able to work remotely.

In standard conditions, the updated income of a citizen on daily basis is equal to:

Updated Income = (Income− Expenses)× ‖Current Position− Previous Position‖

(3.32)

In this way, the ability of moving freely is represented as a way to possibly increase

their income (eg. citizen can travel to work and during working activities).

Running an example simulation for 50 days, without applying any restriction would

then lead to the results shown in Figure 3.23, no financial support requests and



45 Chapter 3. Epidemic Modelling

overall £4464.241 of average savings accumulated by the population.

Figure 3.23: Financial Modelling (No restrictions applied)

Applying instead a lock-down would then result to just £3402.764 accumulated sav-

ings (mainly from higher social classes) and 241 financial support requests received

just from the working class. Applying restrictions, led, on the other side, to a sharp

decrease in the overall number of infected and deaths in the community.

Figure 3.24: Financial Modelling (Lock-down)
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3.5 Extras

In order to make the web application, a complete tool which could be used by any

type of users, a professional and user-friendly design was created using Streamlit and

the app has been made available to the web by creating an Amazon Web Services

(AWS) EC2 Linux Instance. This enabled to easily fetch real time data from various

sources and to implement animated and interactive plots.

Some additional features which have been added to the web application are a live re-

port of how Coronavirus has been spreading around the world and live news updates

about this topic.

3.5.1 Live World Statistics and Records

In this section of the web application, summary statistics of the number of cases/re-

covered/deaths due to Coronavirus, have been provided (Figure 3.25).

Figure 3.25: World Statistics Example

These included:

• Record of the number of cases/recovered/deaths in the world up to date.

• Interactive world view of how the number of cases are spread around the word.
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• Charts displaying what are today’s top 10 countries for number of cases/deaths

and how their numbers changed in the last 24 hours.

• Interactive animations displaying how Coronavirus spread across different coun-

tries over time.

The data used in order to create these charts was provided by the Center for Systems

Science and Engineering (CSSE) at Johns Hopkins University [34] and automatically

updated every 24 hours.

3.5.2 Live World News and Sentiment Analysis

This section was possible thanks to the use of the Python News API [35]. Making

use of this API, live news are fetched every 2 hours from a large number of countries

around the world about Coronavirus.

Figure 3.26: World News Example
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Using the fetched news articles, it was then possible to apply sentiment analysis in

each of the different countries in order to understand what are the key words of the

day and what’s the overall sentiment about the outbreak. Sentiment Analysis is

one of the most popular Natural Language Pre-processing (NLP) techniques used in

order to infer sentiments from text data and expressing them as a numeric score. If

applied to large databases (e.g. Social Networks, News Websites), this technique can

be able to provide valuable information about how the public is reacting to macro

changes in fields such as politics and economics.

Standard NPL techniques (eg. Tokenizzation, Stop Words Removal, Stemming)

have been applied in this case study using the Python NLTK (Natural Language

Toolkit) library and the sentiment was calculated using the VADER (Valence Aware

Dictionary and sEntiment Reasoner) model. This type of model would then return

a sentiment score between -1 (negative) and 1 (positive).

Figure 3.27: World News Sentiment Analysis

3.5.3 Live Feedback A/B Testing

Finally, there has been designed a section to get some feedback from the web applica-

tion users and automatically generate an A/B Testing report to asses if either Agent

Based Modelling or Compartmental Modelling are able to provide a statistically

significant improvement for policy makers to derive conclusions (Figure 3.28).
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Figure 3.28: Real Time A/B Testing

Once logged the responses from the users, a series of summary statistics are auto-

matically generated:

• Binomial distributions of the two examined groups.

• Conversion Rates (Equation 3.33).

• Relative Uplift (Equation 3.34).

• Z Score.

• P Value.

• Making use of the calculated metrics, is then generated a Boolean value rep-

resenting if the experiment results can be considered statistically relevant or

not.
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CRC =
Conversion C

V isitors
× 100% CRT =

Conversion T

V isitors
× 100% (3.33)

Relative Uplift =
CRC − CRT

CRC

× 100% (3.34)

Additionally, it has been made also possible for users to vary the requirements of

the statistical test by choosing a confidence percentage and if to consider our type

of hypothesis to be One Sided or Two Sided.

In order to validate this A/B testing tool, it has been tested against different online

tools such as AB Testguide [36] for different input values.

Additional background information about A/B Testing and it’s application in COVID-

19 clinical trials, can be found in Appendix G.

3.6 Remarks

The different Compartmental and Agent Based Models proposed in this chapter

aimed to provide an interactive tool in order to simulate how viruses can spread in a

community and what can be done in order to try to control the rate of transmission

(using COVID-19 as a practical case study). Although, these models can only be

considered to be an approximation of the real world dynamics and might therefore

not be able to capture all the key aspects related to a disease. As Scott Ambler

[37] said: “The primary purpose of modelling is to provide an opportunity to think

before you act”.

Some examples of limitations in the proposed models are [38]:

• An inaccurate estimation of the growth rate can potentially lead to a poor

prediction in the long term of the estimates of the number of infected and

deaths (for example due to the stochasticity of the Agent Based Models).

• Small changes in how/when different intervention techniques are applied can

potentially lead to completely different simulation results (exponential growth

vs exponential decay).
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• Simple models might at times provide a more accurate bigger picture of the

simulation compared to complex models. In fact, simpler models might not

have some constrains embedded instead in complex models which have been

designed to study more specific situations.

• Using a continuous probability fraction to express how likely it is that the

virus might spread from an individual to another might result in an exces-

sively pessimistic view of how the epidemic might evolve (e.g. if a lock-down

is lifted before all the cases are eradicated then the number of infected will

most likely start to increase exponentially again). This problem has been par-

tially addressed by adding a ”minimum contact radius” in the Agent Based

Simulations.

• Concerning the examined Compartmental Models, systems of differential equa-

tions are highly sensitive to initial conditions and changes in them can lead to

completely different outcomes.

Finally, the COVID-19 data used to fit the models might not be accurate since many

countries around the world have not been able in the past few months to achieve an

adequate testing capacity.
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COVID-19 Analysis

During Chapter 3, we had the opportunity to understand how to potentially model

a disease spreading in a community. In this chapter, we are instead going to expand

this topic in order to take into account how the spreading of the disease can be

forecasted (using real world data) and how comorbodities can be taken into account

in the case of COVID-19.

4.1 SIR Time Series Estimation

Building on from the SIR model constructed in Section 3.3.1, we can make use of it

in order to approximate real world data and predict future trends [39].

This process can be summarised in the following two steps:

1. Estimating β and γ, given the data about the number of cases and recovered

in a country. In order to optimise iteratively these two parameters, a modified

form of the Root Mean Squared Error (RMSE) equation has been used to take

into account of both the number of cases series and the number of recovered

individual (Equation 4.1). In Equation 4.1, there has been additionally added

an hyper-parameter (α) to decide if to give more weight either to optimising

the number of cases or recovered curve fit. This exercise has therefore been

designed to be an optimization minimization problem, in which the param-

eters estimation is improved iteratively by minimising the overall loss. This

optimization process is then carried out making use of the Limited-memory

BFGS (L-BFGS) algorithm. The L-BFGS algorithm is an approximationi of

the traditional BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm which

works by estimating the Inverse of the Hessian Matrix in order to move through

the search space. The calculated β and γ are then going to be used as our pa-

iLimited-memory BFGS, approximating the traditional BFGS algorithm manages to in fact to
keep a linear memory consumption.

52
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rameters for the SIR model.

Loss = α×

√√√√ 1

n

n∑
t=1

(It − IDt)2 + (1− α)×

√√√√ 1

n

n∑
t=1

(Rt −RDt)2 (4.1)

where: It, Rt SIR Infected and Recovered timestep

IDt, RDt Infected and Recovered from data timestep

n Number of timesteps

2. Solve the SIR model equations by numerically integrating them and provid-

ing some initial condition values for the number of susceptible, infected and

recovered in the population. The values of the initial conditions can then be

calculated by taking into account the population size of the country we are

examining and the number of cases registered so far. The integration method

used instead to solve the system of differential equations (4th order for 3 di-

mensions), was the Explicit Runge-Kutta method [40].

In Figure 4.1 are available the prediction results of Italy and Germany as of the 9th

of July 2020 in order to predict the following 30 days trends. As can been seen from

the results, both countries have been fairly well approximated and the number of

infected predicted in the simulation have been slightly overestimated. This mismatch

although can still look quite realistic in reality because of the limited amount of tests

available and presence of asymptomatic patients.

Figure 4.1: Italy and Germany SIR Forecasting
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4.1.1 ML Forecasting

Another possible approach which can be taken in order to forecast time series is

to use standard Machine Learning and Deep Learning techniques. In this case, the

number of infected cases in Germany over time is going to be taken as an example ii

to forecast the number of cases in 30 days time. In order to accomplish this task, the

Python Darts library [41] has been used and the following models have been taken

into consideration:

1. Auto ARIMA (Auto Regressive Integrated Moving Average): is a

time series method which can be used in order to make predictions as a linear

weighted sum of past input data. In the Auto version of ARIMA, the model

parameters are automatically inferred through differencing tests and optimised

by recording Information Criterion (e.g. Akaike Information Criterion (AIC))

metrics.

2. Exponential Smoothing: this technique follows the same approach of stan-

dard ARIMA models, but the model assigns exponentially decreasing weights

for past observations.

3. LSTM (Long-Short-Term-Memory): The LSTM is a type of Recurrent

Neural Network (RNN) ideated in order to add a memory mechanism suitable

to analyse time series (the information is kept in a loop and data is fed in

sequentially).

4. T-CNN (Temporal Convolutional Neural Network): The T-CNN is a

type of Convoluational Neural Network used for time series forecasting. This

type of model is composed by a one dimensional convoluational network com-

bined with causal convolutions. In causal convolutions, outputs at a specific

timestep are convolved just with elements of the same timestep and of previous

layers (in order to add time dependencies).

The results obtained from this analysis are available in Figure 4.2.

iiUsing data up to the 9th of July 2020.
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In this case, all the models have been used in order to predict a portion of the current

series (so that to estimate a fit loss) and predict the next 30 days in the future of

the number of cases in Germany.

Figure 4.2: Germany ML Forecasting

In this case, MAPE (Mean Absolute Percentage Error) has been used as our loss

function. MAPE is in fact one of the most commonly used loss function for regres-

sion tasks (Equation 4.2). It’s main advantages are interpratibility (we work using

percentage terms) and scale-independency. One of the main disadvantages of MAPE

is that it can be undefined for actual values close to zero.

MAPE =
1

n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣× 100 (4.2)

where: At, Ft Actual and forecasted time-step

n Number of datapoints

Overall, the LSTM and T-CNN managed to best fit the original data, while both

Exponential Smoothing and Auto ARIMA predicted an increase in the number of

cases over the following month.

Complex Deep Learning models are currently able to offer us good performances on

a wide variety of tasks but they heavily rely on past data and they are not able to

give us any insight about how the system might work behind the scenes. On the

other hand, using for example an SIR model in order to make predictions, can allow

us to not only to make estimates (like just done using ML based techniques), but

also to infer underlying epidemiology parameters such as β and γ which can in turn

give us more information about how the disease is spreading in a community.
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4.2 Coronavirus comorbidities

Two of the greatest factors which seem to have the greatest impact over the mortality

of Coronavirus for different patients, are age and possible pre-existing conditions.

In different models implemented in Chapter 3, the age factor has been taken into

account by varying the mortality likelihood depending on age. In this sectioniii, we

are instead going to have a look at which pre-existing conditions seem to have the

greatest impact on COVID-19 mortality (Figure 4.3).

Figure 4.3: Conditions contributing to COVID-19 Deaths

As can be seen from Figure 4.3, influenza and pneumonia seem to be one of the main

causes of deaths related to COVID-19. Taking a greater look at the patients ages

whom died having these pre-conditions, we can then see how having a greater age

can increase the overall likelihood of dying because of COVID-19 (Figure 4.4).

Figure 4.4: COVID-19 Deaths Distribution

iiiMaking us of the data provided by the National Center for Health Statistics [42].



57 Chapter 4. COVID-19 Analysis

4.2.1 Survival Analysis

Survival Analysis is one of the most common mathematical modelling approaches

which can be used in order to estimate the time it can take for a particular event to

take place. This type of approach can therefore be used in order to answer causal

questions such as: What is the likelihood a COVID-19 patient would die within a

given time frame? How would that change given the individual specifics (e.g. pre-

existing conditions) and provided cures?

The time for an event to happen (e.g. a patient death) can be characterised in this

case by a continuous non-negative random variable. This random variable can then

be summarised in terms of its probability density function (g(t)) and cumulative

density function (G(t)). The cumulative density function at a specific time would

then give us the probability that someone might have died by then (Equation 4.3).

G(t) =

∫ 0

t

g(t)dx (4.3)

The probability that a death might have not occurred by a specific point (Survival

Function), could then be specified as shown in Equation 4.4 as S(t) = 1−G(t).

S(t) =

∫ t

∞
g(t)dx (4.4)

Finally, making use of the Survival Function, we can then estimate the rate at

which the different patients die in our population iv (Hazard Function). The Hazard

Function, can then be considered to be as our measure of risk to die in the provided

time interval (Equation 4.5).

H(t) =

S(t)− S(t− dt)
dt
S(t)

=
g(t)

S(t)
(4.5)

Making use of these basis, we can then implement a non-parametric model such as

the Kaplan-Meier Estimate in order to create a probabilistic survival curve of the

patients survival against time [43].

ivGiven the provided individual characteristics.
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The Kaplan-Meier Estimate can be calculated using the expression shown below. In

Equation 4.6, ni represents the patients at risk at time ti, while di the number of

deaths occurred so far in time.

Ŝ(t) =
t∏

i=ti

ni − di
ni

(4.6)

As a practical example, let us consider we are trying to test the efficacy of an antidote

for COVID-19 in order to reduce the mortality rate of patients which suffer at the

same time of hypertensive diseases. We run an experiment with 400 patients and

divide them into a Control (No Antidote) group and a Treatment (Using Antidote)

group of 200 patients each. Using the Kaplan-Meier Estimate, we can then be able to

estimate if the antidote can have a positive impact or not. For example, in Figure 4.5

there is shown a possible outcome in case the antidote has a positive effect compared

to no intervention.

Figure 4.5: Survival Curve

As shown in Figure 4.5, all patients start with a probability to survive equal to one

(before being infected) and then using the antidote can manage to limit the nega-

tive impact the disease can have on their survival probability. In Figure 4.5, there

have additionally been included confidence intervals in order to take into account

uncertainties due to the reduced sample size and possibility of bias in the created

data.

Another possible approach which can be used to visualise how using an antidote can

be of help or not to prolong the life span of the considered patients is to plot the
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number of days a patient survived on a time line (Figure 4.6). In order to make the

data visualization easier, just a random sample of 20 patients has been considered in

Figure 4.6. Patients which have survived more than 9 days have automatically been

considered as recovered in this example.

Figure 4.6: Patients survival span throughout experiment

In order to make our experiment more accurate and personalised for each individual

patient, we could then try to make use of additional information about the patients

(e.g. age, sex, economic status). This could be easily done, making use of more

advanced models such as the Cox Proportional Hazard Model. This approach has in

fact been taken in different research publications such as ”Risk factors for severity

and mortality in adult COVID-19 inpatients in Wuhan” [44] and ”Survival Analysis

of COVID-19 on Democracy with Cox Proportional Hazards Model” [45], so that to

test new approaches to reduce the mortality rate of COVID-19.
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Project Management

5.1 Time Management

Throughout this project I made use of backup repositories such as:

• Dropbox: to store files related to this project, and to be able to access them

from any type of station at any moment.

• GitHub: to retain a version-control of all the written code, Latex files and

create a website page to interactively share code and simulation animationsi

• Amazon AWS EC2 Instance: to store the Epidemic Modelling Dashboard

Application and create the live version.

• Trello Board: all the different planned tasks have been recorded and divided

on an online Trello board in order to easily plan and keep track of what tasks

are left to do and any possible related reference list.

In Appendix A, there are additionally available a series of project management tech-

niques which have been used in order to best organise and plan this project.

1. A Gantt Chart representing the planned project-schedule.

2. A Gantt Chart summarising the actual project-schedule.

3. A Risk Assessment Matrix summing up all the possible risks related to this

study.

4. A Work Breakdown Structure displaying in a tree-like format the main project

milestones.

Finally, in Appendix J there is available the Design Archive Guide, while in Appendix

K is registered the total Word Count for the project report.

iAdditional information available in Appendix H.
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5.2 Data Management

In order to complete this project, use has been made of different freely available data

sources in order to create the Epidemic Modelling Dashboard. All the different data

sources used, have been acknowledged and referenced as part of this research study.

5.3 Project Challenges

One of the greatest challenges faced as part of this project, was creating the Agent

Based Models outlined in Section 3.4. These models have in fact been created entirely

from scratch (not having to follow strictly any mathematical model). Although,

taking this approach made possible to build an easily scalable framework able to

incorporate different society aspects such as spatial division in communities and

economy simulations.

The different components composing these models have in fact been constructed

in order to closely resemble SIR based models, while making it possible to easily

incorporate much more complicated dynamics. All the different formulas used in

order to design these systems had then to be constructed by hand and through

experimentation (e.g. Death probability, Income Update).



Chapter 6

Conclusion

Overall, this project had a positive outcome and all the objectives established in the

Project Brief (Appendix I) have been accomplished.

6.1 Summary

As part of this study, different approaches to find causal relationships in epidemiology

studies have been examined by using: Compartmental Models, Agent Based Models,

A/B Testing and Survival Analysis.

Using Compartmental Models, it was possible to create computationally effective

simulations in order to deterministically keep track of a simulation dynamics given

a set of initial conditions. One drawback of this approach, was the difficultly to

keep track of individuals behaviours and spatial movements (this could be partially

resolved by using sets of Partial Differential Equations).

Agent Based Modelling made it instead much easier to uniquely define the char-

acteristics of each individual in a population creating custom behaviours both on

an individual and sub-group level. Two of the main drawbacks about this type of

approach is the overall high level of stochastic behaviour and the increased time

complexity.

A/B testing can instead be used in situations in which we are able to run some form

of controlled experiment. Controlled experiments are in fact commonly referred as

the gold standard for causal analysis. Although, A/B tests can be quite difficult

to run in situations in which it is unethical to apply some form of intervention on a

group of people or when experimentation can be quite costly.

Finally, Survival Analysis is another common approach which can be used in order

to asses the statistical significance of an experiment. Using simple non-parametric

models such as the Kaplan-Meier Estimate it can be relatively easy to gain insights
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on a population level. While using instead more complex parametric models such as

the Cox Proportional Hazard Model, designed intervention results can be obtained

for each participant in the experiment.

6.2 Further Advancements

In order to take this project further, different aspects could be taken into consider-

ation such as:

• The Live Feedback A/B Testing web application page could be further im-

proved by calculating the observed power and making adjustments depending

on the provided sample size.

• Using NPL, it could be possible to find patterns in research publications about

research advancements to find a cure/vaccine against Coronavirus. In this way,

underlying patterns could be analysed and used in order to make progresses

(e.g. by combining different approaches).

• As more data about Clinical Trials would become available in the following

months, it could be possible to make use of it in order to find causal relation-

ships in how different treatments might effect different patients.

• Introduce other causality related techniques such as Knowledge Graphs and

Explainable AI.

• Make use of open source causality libraries such as Microsoft DoWhy [46], Uber

CausalML [47] and QuantumBlack CausalNex [48].

Finally, the principles of the proposed Agent Based and Compartmental models could

possibly be applied not only to simulate the spreading of a disease but also other

types of viral content such as news and ideas through a network of individual.
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A Project Management

Figure A.1: Planned Gantt Chart
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Figure A.2: Actual Gantt Chart
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Figure A.3: Risk Assesment Matrix
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Figure A.4: Work Breakdown Structure
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B Power Predictive Score (PPS)

During the last few years, different approaches have been taken in order to try to

overcome correlation limitations. This research focus led then to the development

of the ”Causality Revolution” and alternative metrics to correlation such as the

Predictive Power Score (PPS) [49].

Typical correlation analysis is able to tell us if there is a linear relationship between

different variables by returning a score between -1 (e.g. if one variable increase in

values, the other decreases) and 1 (e.g. if one variable increases in value, the other

one will follow a similar trend). Although, correlation is not able to identify any

non-linear relationship and is not able to handle non-numeric data. In the case of

categorical data, this could potentially be converted into numerical data by using for

example One Hot Encoding or Word Embedding techniques but would most likely

lead to an increase of the dataset dimensionality in order to achieve good results.

Finally, correlation might not be able to understand if relationships between the

different columns are symmetric or asymmetric.

In Figure B.5, is available a summary of some examples of correlation trends and

limitations.

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

Figure B.5: Correlation Trends (Image reproduced from [50])

The predictive power score has been ideated in order to try to overcome the pre-

sented correlation limitations. One possible way to calculate the PPS is to train a

Cross-Validated Decision Tree model on one feature and consider the other feature
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we want to consider as our label. We can then evaluate the model using an appro-

priate evaluation metric and then normalise the score by comparing it with the score

obtained by a naive predictor. A possible set-up for a PPS calculation is shown in

Table 1.

Numeric Data Categorical Data
ML Model Decision Tree Regressor Decision Tree Classifier
Evaluation Metric Mean Absolute Error Weighted F1 Score
Naive Predictor Predict median value Predict most common class

Table 1: Predictive Power Score Set-up

Where the Mean Absolute Error (MAE) and F1 score can be defined as:

F1 = 2× precision× recall
precision+ recall

MAE =
1

n

n∑
i=1

|xi − x| (1)

The result from the evaluation metric can then be normalised by comparing it with

the results from the naive predictor. In the case of the F1 Score, one is going to be

considered our upper limit and the naive predictor score as our lower limit.

PPS =
Decision Tree (F1)−Naive Predictor (F1)

1−Naive Predictor (F1)
(2)

A similar formula could then be calculated for the MAE case, but zero should be

considered as our lower limit (in this case, lower scores are considered as better).

PPS = 1− Decision Tree (MAE)

Naive Predictor (MAE)
(3)

Following this procedure, we would then have a PPS score between 0 (no relationship)

and 1 (perfect relationship) able to capture either linear/non-linear relationships and

to work with either numerical or categorical data.

As a simple demonstration of the PPS score, there is shown in Figure B.6 a noisy

cosine function. In this example, the X axis has been realised by creating a uniform

range between 0 and 1000, while the Y axis has been created by passing the respective

X value in a cosine function and adding some small noise on the result. In this way,

it is designed a clear non-linear dependence between X and Y.
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Calculating the correlation between the two features would then lead to a result

equal to zero (from either points of view). Using instead the PPS would then lead

as expected to a score of 0.737 of X respect to Y and of 0 for Y respect to X.

Figure B.6: PPS Score Example

The Predictive Power Score is just one of the different approaches which can be

taken in order to go beyond correlation traditional limitations, other examples are:

Causality, relative entropy and Granger techniques.
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C Logistic/Exponential Curve Fitting

For a logistic curve at the turning point:

Slope = Growth Factor/2⇒ Doubling T ime (DT ) =
ln(2)

Growth Factor/2
(4)

Instead, for an exponential curve:

Slope = Growth Factor ⇒ Doubling T ime (DT ) =
ln(2)

Growth Factor
(5)

A worked out example with the results from the top three countries with the most

number of Coronavirus Cases as of the end of June 2020, is available below. From

this example, we can easily see how well our data resembles a logistic/exponential

curve (using the R2 score to quantify the mismatch) and what’s the predicted time

for the number of cases to double given the current trends.

Figure C.7: Curve Fitting
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D Project Demonstration

Two of the main functionalities of the created secondary GitHub pages website are a

Reveal.js online presentation of the whole project and a D3.js scroller page created for

interactively presenting and explaining different concepts of this research project. In

Figure D.8, there is available an example of part of the created Reveal.js presentation.

Figure D.8: Reveal.js Presentation

In Figure D.9, there is instead shown the first section of the created D3.js story-telling

narrative.

Figure D.9: D3.js Scroller
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E Compartmental Models Causal Diagrams

In this Appendix there are available the Causal Diagrams of the epidemic compart-

mental models introduced in Section 3.3.1.

The SIR and SEIR models can be described as shown in Figure E.10 using a causal

chain.

Figure E.10: SIR and SEIR

The SEIR model including also a deaths compartment can instead be described by a

chain followed by a fork junction. Finally, models including time-limited immunity

can be created by introducing a possibility for cycles in the graph.

Figure E.11: Advanced Models
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F Population Modelling Pseudo-code

Algorithm 1 Population Modelling Pseudo-code Outline

1: E ⇐ Contact Radius
2: p⇐ Unlikeliness of Spread
3: p died⇐ Death Probability dependent on age
4: for day in simulation days do
5: for individual in population do
6: Record individual status
7: if Infected then
8: if Draw with probability (p died× age == 1) then
9: individual status⇐ Dead

10: else
11: if (Rehabilitation days == 14) then
12: individual status⇐ Recovered
13: end if
14: Rehabilitation days+ = 1
15: end if
16: else if Susceptible then
17: close people = 0
18: for friend in community do
19: if (Friend == Infected) and (Euclid Dist < E) then
20: close people+ = 1
21: end if
22: end for
23: if (Draw with probability dependent on close people and p == 1) then
24: individual status⇐ Infected
25: end if
26: end if
27: if (Static == False) then
28: individual X and Y position update
29: if individual X or Y position out of boundaries then
30: Adjust position and reverse movement direction
31: end if
32: end if
33: end for
34: end for
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G Clinical trials

Making use of the data from the United States ClinicalTrials.gov website, it has

been possible to gain insights about current clinical trials as of July 2020 against

COVID-19 [51]. As can be seen from Figure G.12, Hydroxychloroquine has been so

far the most common treatment tried.

Figure G.12: COVID-19 Clinical Trials

As outlined in Section 2.4.1, clinical trials are one of the main examples of A/B

testing application. Gathering results from an A/B test, we can then be able to infer

causal relationships about what can be the potential effects of a treatment [52].

In this setting, the Causal question we are asking ourselves is: Does a certain treat-

ment decrease COVID-19 mortality rate? This question can then be formulated in

statistical terms as a null and alternative hypothesis. In the null hypothesis,

applying the treatment would not lead to any major change in the mortality rate

and therefore both the treatment and control groups will be quite similar. Instead,

in the alternative hypothesis, the treatment would cause a statistically significant

change between the two groups.

In our case, patients affected by COVID-19 would be considered as our population

and our intervention (providing experimental medical treatment), would then be

compared to no intervention. Variation in mortality rate could then be used as

our metrics to asses the results. Patients should then be randomly assigned to

either groups so that to avoid introduction of any form of bias (e.g. patients age,

comorbidities, geographical location). If bias is unconsciously introduced, then this
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could lead to some form of confounding bias, which would then make it really

difficult to disentangle what are effects due to the intervention and which ones are

instead caused by a flaw in the randomization process.

Following on with our example, the number of times an intervention leads to a sub-

stantial difference compared to the control group can then be summarised over a

number of trials as a Binomial Distribution. In this distribution, the X axis will rep-

resent the count of possible outcomes, while the Y axis will represent the probability

associated with an outcome. Although, according to the Central Limit Theorem, as

we would increase our sample size, we would then end up with a Gaussian Distribu-

tion for each group in the experiment.

In Figure G.13, there is shown a possible outcome for our example. As can be seen

from the diagram, four different areas are present: True Positive (TP), True Negative

(TN), False Positive (FP), False Negative (FN).

Figure G.13: A/B Test Distributions

In the TP case, we can affirm our treatment is beneficial since it managed to pass

our test for the hypothesis (e.g. decreasing the mortality rate). In the case of the

TN area, we can instead be confident that our treatment is not beneficial. While in

the FP area, we might be deceived to believe our intervention was beneficial while it

wasn’t (the opposite holds true instead in the FN area). In these last two cases, it

is then vital to look for any possible form of bias interference.
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H Project Repository

Throughout this project, a private GitHub repository has been used as a key version

control tool. The overall project has been structured into 4 different branches:

• Master: In this branch, all the code and support files necessary in order to

create the web application outlined in Chapter 3 have been stored. The web

application has been mainly developed on a local machine and then deployed

on an Amazon Web Services EC2 Instance through Git control.

• Extras: In this section there has instead been developed different parts of

this project such as the code used to explain the Simpson Paradox (Section

1.2), Coronavirus comorbidities (Section 4.2), Survival Analysis (Section 4.2.1),

Power Predictive Score (Appendix B), Clinical trials (Appendix G). Addition-

ally, for the SIR Time Series Estimation model introduced in Section 4.1, the

has also been created an additional set-up in order to make possible to run this

model easily through the command line.

• Gh-pages: This branch has instead been used to create and deploy through

GitHub Pages a support website. This website has then been used to share two

online presentations about the project (for the second examiner demonstration)

and to create two online interactive shareable code notebook in order to explain

how different aspects of the project have been programmed (Appendix D).

• Thesis: This project report has been entirely created using LATEX and syn-

chronised with this branch of the repository in order to keep a backup and

version control of the writing itself.

Additionally, a Wiki page has been included as part of the repository documentation

in order to provide adequate background reading and context in case this project is

going to be developed any further in the future (Figure H.14).
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Figure H.14: Repository Wikipedia

Finally, Github Actions have been included in order to add some form of Continuous

Integration (CI) support in line with common DevOps (Development-Operations)

principles.
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Supervisor:
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• Problem

Thanks to recent advancements in Machine Learning and Deep Learning, has
been possible for Artificial Intelligence (AI) models to achieve superhuman
performance in specific applications. Although, these type of models are
currently not able to generalise to a good extent for different (but similar)
types of applications. Additionally, good performance of Deep Learning
models is highly dependent on providing large amount of data. Due to
these limitations, it could then be almost impossible to manage to create
any form of Strong AI architecture. One possible approach which can be
used in order to overcome these type of limitations, is to design models
able to capture Causal Relationships between different variables in a dataset
(e.g. Supervised/Unsupervised Learning) or elements in an environment (e.g.
Reinforcement Learning).

• Goals

This project aims to:

1. Outline today’s main Machine Learning limitations and propose pos-
sible alternatives.

2. Create an Epidemic Modelling online dashboard which can be used in
order to design different possible scenarios and answer causality based
questions.

3. Research different ways to overcome Machine Learning limitations and
provide example applications using Graphical Methods and Explain-
able AI.

• Scopes

Successful application of Causality in Machine Learning, could potentially
lead to major breakthroughs in the field of Artificial Intelligence and have a
huge commercial impact. Causal Reasoning, could in fact allow us to create
more explainable models which could then be applied in different sensitive
fields such as Medicine or Law. Additionally, it could make possible to apply
AI not just in automation based tasks but also in more creative applications
(e.g. text/audio automatic generation). Finally, increasing the transparency
of the decision making process of the model, would ultimately also make end
users more confident/comfortable in using causal based models.
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I Project Brief
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J Design Archive Guide

A tree representation of the Project Design Archive is represented in the figure below.

This image has been created through the windows command prompt using the tree

command in the designed directory.

Figure J.15: Design Archive
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K Word Count

The registered word count for this report, starting from Chapter 1 to Chapter 6, was

equal to 14,999 words. This has been measured using Doc Word Counter [53].
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